
Anchored Customization: Anchoring Settings to the
Application Interface to Afford Customization

Antoine Ponsard
University of British Columbia

aponsard@cs.ubc.ca

Joanna McGrenere
University of British Columbia

joanna@cs.ubc.ca

ABSTRACT
The settings panel is the standard customization mechanism
used in software applications today, yet it has undergone min-
imal design improvement since its introduction in the 1980s.
Entirely disconnected from the application UI, these pan-
els require users to rely on often-cryptic text labels to iden-
tify the settings they want to change. We propose the An-
chored Customization approach, which anchors settings to
conceptually related elements of the application UI. Our Cus-
tomization Layer prototype instantiates this approach: users
can see which UI elements are customizable, and access
their associated settings. We designed three variants of Cus-
tomization Layer based on multi-layered interfaces, and im-
plemented these variants on top of a popular web application
for task management, Wunderlist. Two experiments (Me-
chanical Turk and face-to-face) with a total of 60 participants
showed that the two minimalist variants were 35% faster than
Wunderlist’s settings panel. Our approach provides signifi-
cant benefits for users while requiring little extra work from
designers and developers of applications.

Author Keywords
customization; settings; contextual interaction.

ACM Classification Keywords
H.5.2 User Interfaces: Graphical user interfaces (GUI)

INTRODUCTION
The HCI community has identified the potential benefits of
supporting users to adapt their software to their own tasks and
preferences [26]. Yet many users do not customize, or only
do so rarely. In today’s software, the de facto standard cus-
tomization mechanism is the settings panel, also known as the
options menu or preferences dialog. These panels have sig-
nificant usability limitations in that the settings they offer are
entirely disconnected from the application UI. There are no
visual affordances in the UI that can help answer the question:
“Is it possible to customize X?” Users must open the settings
panel and then rely on text labels to identify the settings they
want to change, with little to no other contextual information.
Thus, the classic vocabulary problem applies: the language
used by designers to describe an aspect of the interface is of-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI’16, May 07 - 12, 2016, San Jose, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3362-7/16/05$15.00
DOI: http://dx.doi.org/10.1145/2858036.2858129

ten different from the language of users [17]. This creates a
deep gulf of execution between the user’s intentions, formu-
lated in the context of the application UI , and the actions of-
fered in the settings panel. The fact that customization occurs
fairly infrequently over long periods of time [25] only exac-
erbates the problem: users are likely to forget where things
are in the settings panel between customization episodes.

Despite obvious usability problems, settings panels have
undergone only minor improvements since they were first
introduced along with the graphical user interface in the
1980s [22]. The interaction paradigm fundamentally hasn’t
changed: the user can browse tabs of settings, tick check-
boxes, and choose values from drop-downs. These panels es-
sentially represent a developer’s point of view of the applica-
tion’s customization opportunities: they are simple graphical
representations of traditional UNIX config files.

We propose Anchored Customization, a novel approach to
customization designed from the user’s point of view: an-
choring settings to visual elements of the UI that are con-
ceptually related to these settings. This reduces the gulf of
execution, and leverages users’ existing knowledge of the ap-
plication UI. While others have proposed the idea of moving
the access point of a customization closer to the feature that
it affects [35], we take the approach further by allowing users
to access all conceptually related functions from an anchor
point. For instance, a notification icon in the UI can be used
as the anchor to change not only how popup notifications (em-
anating from the icon) are displayed, but also the frequency of
various notifications (e.g., email), and other related settings.
Anchored Customization leverages mental associations that
users can form intuitively between visual elements of the in-
terface and changes they want to make to their software.

Once settings are anchored to UI elements, there are differ-
ent possible ways of visualizing and accessing them. We de-
signed, implemented, and evaluated Customization Layer, as
a concrete instantiation of the Anchored Customization ap-
proach. Customization opportunities are available in a meta-
layer on top of the interface. Users can see all UI anchors
at once in the customization layer, and can access the settings
associated with each, by clicking on each anchor. This type of
layered design has been successfully used in other contexts,
such as online help [7]. Although only a small subset of set-
tings is initially available from any given anchor, the user can
expand a subset with ease to see the full default settings panel.

Our approach is pragmatic: it recognizes that settings pan-
els are the standard in the software industry. Developers rely

1

on this simple mechanism to provide end-user customization,
since these panels are (presumably) an inexpensive part of
the UI to develop. And users are accustomed to them. In-
troducing a new customization mechanism therefore requires
careful consideration of the cost/benefit tradeoffs at play. We
show that anchoring settings to the UI through a customiza-
tion layer has the potential to provide significant benefits for
users, while requiring only minimal extra work from the de-
signers/developers. Our goal is to propose a well-considered
interface improvement that can be adopted widely.

A customization mechanism must be implemented to cus-
tomize a specific app. Although our design approach is ap-
plicable to any software with a GUI that is customizable via
a settings panel, we had to choose a particular application do-
main for a first evaluation. Since task management tools are
widely used, and significant individual differences have been
observed in the way people manage their tasks [20], we con-
sidered that Personal Tasks Management (PTM) would be an
appropriate first application domain for our research.

Our work contributes the following: (1) The concept of An-
chored Customization: to anchor customization opportunities
to conceptually related elements in the application UI. (2) A
systematic review of PTM apps to evaluate a priori the feasi-
bility and potential usefulness of adopting this concept. (3) A
realization of this concept in a customization mechanism, the
Customization Layer, with three variants that explore differ-
ent trade-offs between multi-layered interfaces. (4) An imple-
mentation architecture of these three variants for web appli-
cations: our prototype augments a real-world PTM app, Wun-
derlist [19], but can be adapted to other modern web apps with
minimal additional work for developers and designers. (5)
Two experiments (Mechanical Turk and face-to-face) with 60
participants showing performance improvements of the Cus-
tomization Layer over the regular settings panel provided by
Wunderlist, as well as providing a preliminary understanding
of how users apprehend Anchored Customization.

RELATED WORK
What exactly constitutes customization is not well-
established in the HCI community, despite there being
a rich literature in this space. For example, end-user cus-
tomization has been defined as “the mechanisms by which
users may specify individual preferences, and preserve their
preferred patterns of use, without writing code” [25], but
the requirement to be code-free is not universally adopted.
Regardless, previous research has studied the benefits of
letting users adapt software to their own preferences and
tasks [25, 26, 28]. The challenges of designing and building
adaptable interfaces has produced a rich and varied literature.
Multi-layered interfaces [30, 28] can speed up access to the
most often-used features by grouping them into a dedicated
layer. Sophisticated techniques have been proposed to let
users modify GUIs at run time [11, 10], even without access
to the source code [33, 9, 29]. The end-user development
paradigm goes even further, by empowering users to build
their own applications [24, 15]. Yet, powerful adaptable
approaches generally require users to spend significant time
and effort personalizing their interfaces, often by writing

scripts or editing code—which limits the potential audience
to power users. As a result, these approaches have not yet
been widely adopted in industry.

Adaptive approaches attempt to address that issue by auto-
matically generating user models to predict potentially use-
ful customizations [14]. However, giving control of the user
interface to an automated system has significant drawbacks,
as it tends to make the UI spatially unstable and unpre-
dictable [12]. Mixed-initiative approaches can alleviate those
problems by suggesting possible customizations to the user,
who remains in control of their interface [8, 6]. Ultimately,
adaptive and mixed-initiative approaches put the onus on de-
velopers to build and integrate complex user models into the
interface, which is difficult to do well [21].

Our work focuses on leveraging the customization opportu-
nities already available in existing software settings panels,
with the goal of minimizing the extra costs of customization
for both users and developers. The potential of “representing
tailoring functions in the overall interface” was identified 15
years ago [23], but has received little attention since then. An
early work proposed the concept of Direct Activation [35]
which states that “the access point of the tailoring function
should be designed related to the one of the tailorable func-
tion”. In other words, the settings that affect a given feature
should be accessible from (or around) the access point of the
feature they affect. We broaden this approach by anchoring
any setting to any conceptually related elements of the UI
—not only elements objectively affected by a setting. For in-
stance, the setting for changing the keyboard shortcut used to
“open a new tab” could be anchored to the button that opens
a new tab. This setting does not tailor the “open a new tab”
function itself, but conceptually it makes sense to associate a
keyboard shortcut and a button that call the same function.

The benefits of preserving interface context have been ex-
ploited in other areas of HCI. Perhaps the most common ex-
ample is the context menu, which reduces the time needed
to select options related to the current location of the pointer.
Contextual help is another successful example: the applica-
tion interface can be augmented with links to a wiki [32],
user-generated Q&As [7], or information on the current
state [18]. Yet customization presents unique challenges that
distinguishes it from contextual help. While help queries tend
to naturally correspond to elements of the interface that users
are trying to learn, the correspondence between settings and
interface elements may be less clear, as settings can affect
software in arbitrary ways. Thus, it was not obvious at the
outset of our research that such direct correspondences could
be found from settings to UI elements. The literature offers
promising examples of representing meta-information about
an application as an overlay on top of the app interface: recent
changes [2, 4], computational wear [27], predicted use [16],
even low-level usability problems [34]. This motivated our
visual design approach, which represents customization op-
portunities as a meta-layer on top of the interface.

SYSTEMATIC ASSESSMENT OF FEASIBILITY
The motivation of Anchored Customization is to address the
shortcomings of settings panels, which appear to be the stan-

2

Application Platform # settings directly indirectly not

Astrid Android 41 25 6 10
Evernote Desktop 31 11 12 8
Gmail Web 29 16 7 6
RTM Android 26 10 11 5
Toodledo Web 53 37 7 9
Toodledo Android 43 26 16 1
Wunderlist Web 41 12 28 1
Word Desktop 132 90 24 18

total 396 227 111 58
normalized % 100% 52% 32% 16%

Table 1. Summary of a systematic review of 8 PTM apps to determine
the feasibility of Anchored Customization. For each app, the settings
provided in the settings panel were classified as directly, indirectly, or
not anchorable.

dard in the software industry. To verify this assumption, we
performed a systematic review of a set of PTM apps, inves-
tigating which customization mechanisms they provide. We
then conducted a second review to evaluate the feasibility of
the Anchored Customization approach.

Existing customization mechanisms. We chose a particular
yet fairly generic application domain: Personal Task Manage-
ment. We selected 12 of the most popular PTM apps1, for a
total of 20 unique apps (counting separately both desktop and
Android versions). For each application we recorded which
customization mechanisms were offered, how many user ac-
tions were needed to access them, and the type and number of
settings each mechanism could change. Our review showed
that an overwhelming majority of settings were accessed via
settings panels. In fact, only 1 of the 20 applications didn’t
offer a settings panel at review time—but it now does. The
structure of these panels was remarkably similar: tabs for
desktops apps, multi-level menus on Android. In both cases,
additional visual delimiters such as lines or boxes were some-
times used inside each tab or level, to create subsections of
related settings. The same widgets were used to change set-
tings: checkboxes or toggles for binary settings, drop-downs
or radio buttons for multiple choices, and in some cases slid-
ers for numbers. We found that settings panels also contain a
variety of non-settings items, such as an “About” page.

Feasibility of Anchored Customization. The widespread use
of settings panels highlights the potential usefulness of An-
chored Customization. We next evaluated the feasibility of
this approach on a subset of apps from our first review. We
selected apps with more than 15 settings, and included Mi-
crosoft Word and Gmail which, while being general-purpose
software, can both also be used for task management. As
shown in Table 1, according to our estimation, 52% of set-
tings could be anchored easily in the interface. A large num-
ber of these correspond to settings that directly show or hide
interface elements, or change their position or visual appear-
ance. Another 32% of settings could be indirectly anchored
based on an intuitive mental association. For instance, the fre-
quency of automatic syncing could be anchored to the button
that performs a manual synchronization. This button could
also be used as an anchor for setting the keyboard shortcut
1Evernote, OneNote, Any.do, Cal, Wunderlist, Todoist, Remember
The Milk, Toodledoo, Astrid, Clear, GTasks, and Tasks.

Figure 1. The settings panel offered in Wunderlist, which was used as
the Control condition in Experiments 1 and 2.

that triggers the same function (manual synchronization). Fi-
nally, we estimated that only 16% of settings could not be
anchored anywhere in a meaningful way. These settings cor-
respond either to advanced options (e.g., number of weeks
after which completed tasks are archived), or global options
(e.g., display language) which are not related to any particular
UI location.

Overall, the results of our second review provide solid ev-
idence for the viability of our Anchored Customization ap-
proach, at least in the PTM domain: approximately 84% of
settings can be anchored. Yet a significant number of settings
cannot be anchored (16%), which must be taken into account
when designing anchored customization mechanisms.

DESIGN
In most applications, settings are a list of parameters that can
take some predefined values. They are generally given a hu-
man readable label, and sometimes a short description. For
example, a “confirm before deleting” setting can be either
true or false, and could have the description “show ok/cancel
popup when clicking on the delete button”. UNIX-type con-
fig files are the most barebone representation of settings, and
the closest to the programming domain. Users can manually
change settings by editing the config file in a text editor.

Settings panels offer two key improvements over config files.
First, they prevent errors by restricting the values that a
given setting can take. For instance, checkboxes only tog-
gle booleans, and drop-downs offer a limited set of options to
choose from. Second, settings panels often group related set-
tings together into tabs or other forms of subsections, with the
aim to reduce the time needed to access a particular setting.
In this way, settings panels are a static abstract partition of
settings: each setting appears in only one section; sections
are based on abstract categories, such as “shortcuts” or “dis-
play;” and these categories are set by designers at the outset.
An example is shown in Figure 1.

Anchored Customization
The Anchored Customization approach, by contrast, pro-
motes a contextual many-to-many mapping of settings to UI
elements. Any UI element can be used as an anchor—for in-
stance, icons, buttons, menus, even an empty area. The goal
of the mapping is to provide context for each setting. One set-
ting can be mapped to multiple anchors, and multiple settings
can be mapped to the same anchor. The visibility of anchors
and thus their associated settings changes dynamically, de-

3

pending on the current state of the interface. The Anchored
Customization approach leverages users’ pre-existing knowl-
edge of the application UI, instead of requiring them to learn
the abstract structure of a settings panel. Hence, the key idea
of Anchored Customization is that the application interface
itself is used to organize and navigate the settings space.

There are two main dimensions in the design space for mech-
anisms that instantiate Anchored Customization: the display
of the settings and the display of the anchors.

Display of settings. It is not desirable to permanently show
the settings associated with the various anchors. Most ap-
plications offer many settings, which would clutter the inter-
face if they were always visible. Further, customization is
typically very much a secondary infrequent activity. Thus,
in general, the settings associated with an anchor should be
displayed on demand, when the user expresses interest in an
anchor—by clicking or hovering on it, for instance. There
are many ways to display settings once demanded. We ex-
plored three possibilities, inspired by multi-layered interfaces
(described below). But the design space is much larger.
Some interesting dimensions include: Which settings should
be displayed when clicking on an anchor. (Only the settings
mapped to this anchor, or a local neighborhood?) How to rep-
resent each setting. (Now that settings are placed in context,
could the text labels be shortened or replaced by an icon?)

Display of anchors. There are a number of different possi-
bilities when considering how the anchors can be displayed.
One familiar approach is through context menus: anchors are
not explicitly marked visually, but can be used by the user to
demand a corresponding setting. For instance, in Microsoft
Word, right-clicking the ribbon shows a contextual menu with
an option to “Customize the ribbon”. A tooltip that appears
when hovering over an anchor for a short duration could be
used in a similar way. This local, targeted approach answers
the question: Is this customizable? The downside of this ap-
proach, however, is that there is no way for the user to get a
holistic overview of all the settings available within the UI.
Serially invoking the context menu from many different an-
chors is too tedious, and the user must resort to bringing up
the settings panel.

An alternative approach is to provide a global overview of all
the customization opportunities available, by making all the
anchors visible at once, likely through a mode. This approach
helps answer the question: What is customizable? The down-
side of the approach is that entering a distinct mode could
interrupt the user’s workflow, which is why modes should be
used sparingly in interaction design. The contextual menu ap-
proach and the global approaches are not mutually exclusive;
providing both would allow users to choose the one most ap-
propriate for their current need.

Customization Layer
We designed and implemented Customization Layer which
instantiates the anchored customization approach. In the
design dimensions described above, this mechanism uses a
global overview approach to show all anchors in an extra

Figure 2. Customization Layer displayed on top of Wunderlist. The user
is currently hovering over the bottom “star” button on the right-hand
side of the screen; as a result, all star buttons are highlighted in orange
because they share the same settings. Clicking on an anchor displays the
settings associated with it—here, shown in the Minimal panel.

layer on top of the interface. We explore three ways to display
settings on demand, inspired by multi-layered interfaces.

Anchors visible in a layer
To avoid clutter, we did not add graphical elements to visu-
ally mark anchors (contrary to the question marks displayed
in [7] to represent help queries). Instead, anchors are vi-
sually highlighted when users activate a layer on top of the
regular application. In our implementation, the app interface
becomes darker and less saturated, but is still clearly visible
through the Customization Layer. Anchors are shown with
a white background and dark gray text, to optimize legibility
and ensure visibility above the dimmed application interface
(Figure 2).

When the user hovers over an anchor A, that anchor and all
other anchors mapped to the same settings as A are high-
lighted in orange (Figure 2). This linked highlighting helps
users create a mental model of the mapping of settings to UI
elements. For instance, in a PTM app, hovering over a button
highlights all the buttons that share the same setting (e.g., a
keyboard shortcut for marking a “todo” as important).

There is one important special case that required attention
when anchoring settings to UI elements: what if a setting
governs the visibility of the UI anchor itself? Consider for
instance settings that show or hide buttons in a toolbar. Of
course it makes sense to anchor such a setting to the button it
affects; but after hiding the button, how can users access its
associated setting to make the button visible again? To avoid
this problem, we introduce the notion of ghost anchors: an-
chors that correspond to hidden elements in the application
UI. These anchors offer the same functionality as regular an-
chors, but are displayed in a darker gray to indicate their tran-
sient status.

Representing all ghost anchors visually is not necessarily de-
sirable: if an application has many optional, hideable com-
ponents, showing all of them as ghost anchors could break
the application layout, clutter the customization layer, and
overwhelm the user. Furthermore, the customization layer
should look as similar as possible to the current interface of
the application, to help users alternate seamlessly between the
two. For these reasons, we implemented a collapsing mech-
anism: ghost anchors are by default represented by a simple
“chevron” icon in the customization layer (Figure 3). To fur-
ther reduce visual clutter, ghost anchors that are close to each

4

Figure 3. (1) The user selects the “Week” filter, then disables it (not
shown). (2) The corresponding anchor is collapsed under a chevron icon.
(3) Clicking on the chevron reveals the “Week” filter as a ghost anchor.

other are collapsed under the same chevron icon, based on a
simple proximity clustering algorithm. Clicking on a chevron
icon reveals the ghosts that it was previously hiding.

Three variants for displaying settings
When the Customization Layer is shown, clicking on an an-
chor displays the subset of settings anchored to that UI ele-
ment. We explored three visual representations of this subset
(see Figure 4). The Minimal panel (M) only shows the set-
tings in the subset, with an orange background to indicate
that they are related to the anchor that was clicked. Mini-
mal+Context (M+C) is very similar, but a tab name next to
each setting indicates which tabbed pane in the full settings
panel it comes from. In contrast, Full+Highlight (F+H) keeps
the structure of the complete settings panel, and the settings
from the anchor’s subset are highlighted in orange, as are the
tabs in which they appear. Some tabs contain more settings
than can be shown in the height of the panel, so we auto-
matically scroll down to bring into view the first highlighted
setting, if any.

Because some settings might not be anchorable to the inter-
face (cf. Feasibility section), all designs must provide a fall-
back access to the complete set of settings. In F+H, users
can browse all the tabs freely, as they would in a regular set-
tings panel. In M+C, the tab names next to each setting are
actual buttons; clicking on them opens the full panel at the
corresponding tab. In Minimal, a “show all” hyperlink is pro-
vided at the bottom of the mini panel. By default, it opens
the full panel at the tab that contains the most settings from
the anchor’s subset. Users can return to the minimal panel by
clicking a backward arrow at the top left of the full panel.

These three variants reflect different points in the multi-
layered interface design space [30]. The two minimal variants
only show the anchor’s subset of the settings initially, while
F+H uses visual highlighting to distinguish the subset from
all other settings. All three designs are intended (to varying
degrees) to reduce complexity, speed up access to the most
relevant settings, and help the user become aware of the full
set of settings. Hence, they reflect different trade-offs be-
tween a minimal subset of settings and the full settings panel.

As with any multi-layered interface, transitioning from a
lower layer to an upper layer can be challenging for users
[30]. In our implementation, we provide animated transitions
between the minimal variants and the full panel to help users
understand the relationship between the two. The minimal
panels expand smoothly to the full size, while the highlighted
settings glide into their new position. The remaining (non-
highlighted) settings fade in afterwards. Informal pilots found
these relatively simple animations to be helpful for convey-

Figure 4. Minimal, Minimal+Context, and Full+Highlight variants
showing the settings anchored to the “Week” Smart List. Wunderlist
offers several such Smart Lists, which display a list of all todos filtered
by a particular criteria—here, all the todos due this week. Two settings
are mapped to this Smart List: the first changes the shortcut for opening
this Smart List; the second determines whether this Smart List is visible
or hidden in the main interface.

ing the intended mental model. We are not aware of another
multi-layer interface that uses moderately complex animated
transitions like ours, instead of simply fading-in the new ele-
ments

Search. Text search is another effective approach for access-
ing settings. It essentially provides a way to “jump” to a par-
ticular setting without having to locate an anchor or browse
the settings space. Search is afforded by traditional config
files, but rarely offered in settings panels—except in complex
software such as Eclipse. The downside with search is that
the vocabulary problem [17] applies, as users can only guess
search terms [3]. Furthermore, relying on search may hinder
users’ ability to learn other settings. Although not yet imple-
mented, Customization Layer is compatible with text search:
UI anchors could be filtered out if their associated settings
don’t match the query, or visually highlighted if they do.

Software architecture. Our software architecture was de-
signed to be app-independent and extensible to other web
apps. The Evaluation section explains why we chose web
apps, and Wunderlist in particular, as a concrete starting point
for design and evaluation. Adding our Customization Layer
to a web app requires: (1) an API to read and write the set-
tings, and (2) a mapping between settings and visual elements
of the interface, provided by the designers of the app. Since
designers are already familiar with the settings of their app,
creating the mapping should take at most a few hours, ex-
cept for very large applications. In the mapping, UI elements
are represented by CSS selectors, which allows among other
things selecting many similar anchors via a single CSS class.

Implementation. Since Wunderlist doesn’t provide an API
to its settings, we reverse-engineered its front-end to access
the underlying settings directly. We then manually mapped
these settings to appropriate elements of the interface, which
took two hours. From this mapping, our code automatically
generates anchors by creating copies of the DOM elements
matched by the CSS selectors provided. Anchors are then
positioned precisely on top of the original element, creating
the illusion that the elements themselves are highlighted. We
were able to access Wunderlist’s settings directly on the web
client, effectively bypassing the settings panel to customize
the app in real time in our experiments.

5

EVALUATION
We focus our evaluation on assessing the usability of our Cus-
tomization Layer. Given the novelty of this new mechanism,
our two experiments were intended to be exploratory and pro-
vide an idea of the impact of some of its design elements. We
certainly hoped that Customization Layer would help partic-
ipants find settings faster than browsing a traditional settings
panel; but which of the three variants would be the fastest or
most preferred was unknown. Further, we anticipated that the
three variants would impact users’ awareness of the full set of
settings differently: the more contextual information a design
provides, the greater the user’s awareness should be [13].

To maximize the ecological validity of our evaluation, we de-
cided to evaluate Customization Layer within an existing ap-
plication with its actual settings. We chose Wunderlist [19],
one of the most popular PTM apps today (over 10 million
downloads on Android and iPhone) which offers a well-
designed web interface. Of the 20 apps from our system-
atic review, Wunderlist had a particularly clean settings panel,
with numerous and varied settings. It therefore appeared to be
a good baseline for a fair comparison.

Experiment 1: Remote Mechanical Turk
The primary goal of this experiment was to evaluate the per-
formance of our Customization Layer for changing settings,
compared to a traditional settings panel. We used a between-
subject design to avoid negative carry-over effects, because
switching back-and-forth between two very different mental
models could have been confusing for participants. We de-
ployed this experiment on Amazon Mechanical Turk.

Participants. All 48 participants (aged 19-60, median 28.5,
16 females) were regular computer users, and none had tried
Wunderlist before. We had replaced 3 participants, who were
either 2.5 Inter-Quartile Range slower than others in their
condition, or did 2 IQR more errors than everyone else.

Task. The experiment consisted of a sequence of settings
changes. At the beginning of each trial, a popup instructed
participants to change one setting to a given value. Pressing a
“Go!” button would close the popup and start the timer. The
instructions were written in layman’s terms, and did not nec-
essarily use the same words as the label of the target setting.
For example, the instruction “Change shortcut for checking
off todos” applied to the setting “Mark selected do-dos as
completed” in the Shortcuts tab. To help ensure that partici-
pants read the instructions before starting the trial, the “Go!”
button was kept inactive for the amount of time required to
read the instructions at an average reading speed. During that
time, the settings panel (in Control) or the UI anchors (in Cus-
tomization Layer) were hidden, to prevent participants from
planning their actions before the timer was started. During
the trial itself the instructions were visible at the top of the
window, in case participants had forgotten them.

Participants had to change at least one setting before the
“Next” button became available in the bar at the top of the
screen. Clicking this button would stop the timer, indicate
whether the task had been successfully completed, and move
on to the next trial. We enforced a 2-minute time limit for

each trial, after which the trial was marked as a timeout and
participants were taken to the next trial. If participants made
mistakes, the settings that had been changed incorrectly were
reset at the end of the trial, and the target setting changed to
the correct value.

Measures. The duration of a trial was measured between the
time when participants pressed the “Go!” button and when
they changed a setting. At the end of the experiment, partic-
ipants completed two recognition questionnaires in order to
evaluate awareness of the full set of settings: one question-
naire on tab names, one on individual settings. In both cases,
half of the answers were made up by the authors, but plausi-
ble. Finally, participants were asked to rate their satisfaction
on a 7-point Likert scale: the extent to which they liked or
disliked the customization mechanism they were using, and
how easy it was to find the settings they were looking for.

Conditions. We compared four customization mechanisms:
the three variants of Customization Layer (M, M+C, F+H)
and the actual settings panel offered by Wunderlist (Control),
shown in Figure 1. While we accurately reproduced the struc-
ture of Wunderlist’s panel in our F+H prototype, the visual
style was slightly different: Wunderlist generally looks more
polished, with custom drop-downs and an icon on each tab.

Wunderlist currently offers 41 settings in four tabs2. Out of
these settings, we discarded the application language one, as
changing it would make the interface indecipherable for our
participants. The experiment tasks were not equally difficult:
some settings were indeed harder to find than others, espe-
cially if their text label was unclear. To reduce the variability
between subjects, we partitioned the settings into two groups
of 20, carefully chosen to balance the type and location of
the settings they offered. Each participant was assigned one
set. To assess any early learning, participants were asked to
change the same group of 20 settings twice, but in a different
randomized order for each of the blocks of 20.

Design. A 2-factor mixed design was used: 4 customization
mechanisms (M, M+C, F+H, Control; between-subjects) x 2
blocks (within-subject). The settings group control variable
(group 1, group 2) was fully counterbalanced between partic-
ipants. Each participant completed 2 blocks of 20 trials, for a
total of 1920 trials across all 48 participants.

Procedure. After accepting the HIT (work assignment in
MTurk), participants were asked to create a temporary ac-
count on Wunderlist, using a randomly-generated email ad-
dress. Then participants had to drag a custom bookmarklet
(a “bookmark applet”) to their bookmarks bar, and to click
on it to load the experiment code in the Wunderlist webapp.
A series of popups walked participants through a quick tu-
torial, demonstrating the most useful features of Wunderlist.
Participants were then given one practice trial, before starting
any trial. In the 3 Customization Layer conditions, the prac-
tice trial contained a few additional instructions on how to
use this new customization mechanism. Finally, participants
were asked to complete the two recognition tests, to rate the
2Three other tabs show non-settings information, such as “upgrade your ac-
count” and “about this product.” We did include these tabs in our prototype.

6

Figure 5. Experiment 1: 95% confidence intervals of the median dura-
tion per Customization Mechanism and Block. M is significantly faster
than F+H and Control, but not significantly different from M+C. (N=48)

customization mechanism they were using, and to complete
a simple demographics questionnaire. The whole procedure
lasted 32 minutes on average, and participants received an
average compensation of $4.34, depending on their perfor-
mance in the trials and recognition questionnaires. (Incen-
tivizing participants with a variable bonus reward is a stan-
dard practice for MTurk studies.)

MTurk Results
We ran a mixed-design ANOVA on the duration of trials. The
data was log-transformed to satisfy the assumption of normal-
ity, and we used medians to reduce the influence of outliers.
The effect sizes reported are generalized eta-square (η2

G), in-
terpreted as follows: .02, .13, .26 for a small, medium, and
large effect size respectively [1]. As shown on Figure 5, there
was a main effect of customization mechanism (F3,44 = 3.58,
p < .05, η2

G = 0.17), as well as block (F1,44 = 124.63, p < .001,
η2

G = 0.32), but no interaction between the two. M was sig-
nificantly faster than Control (p < .05, 35% faster) and F+H
(p < .05, 30% faster). No other pair was significantly dif-
ferent. All pairwise comparisons use a Bonferroni correction
unless otherwise mentioned. As anticipated, there was no ef-
fect of the group of settings used. There were few timeouts
and errors across all conditions (20 and 54, respectively, for
1920 trials), and they had no significant effect on our results.

A single-factor ANOVA on the tabs recognition scores found
a significant effect of customization mechanism (F3,44 = 5.82,
p < .01, η2

G = 0.28). M scored lower than both F+H (p = .05)
and Control (p < .05), by 2 out of 10 points lower on average.
No other pair was significantly different. There was no dif-
ference either in the recognition scores for settings, nor in the
subjective ratings provided at the end of the experiment. The
median rating for ease of use and satisfaction was the same
for each of the four customization mechanisms: 2 on a scale
ranging from -3 to +3.

Experiment 2: Face-to-Face in the Lab
Although MTurk provided quick access to a diverse set of
participants at a moderate cost, conducting remote experi-
ments has limitations in terms of the insights and qualitative
feedback that can be gathered. Thus, we ran a second experi-
ment in a face-to-face lab setting. This time the customization
mechanism was treated as a within-subject factor, to allow
participants to make informed comparative judgments.

Method differences from Study 1. We recruited 12 partici-
pants (age 21-42, median 24.5, 5 females), all regular com-
puter users. Two had tried Wunderlist before, but were not
using it regularly. The experiment task was identical, except
that participants were encouraged to talk aloud.

Figure 6. Experiment 2: 95% confidence intervals of the median du-
ration per Customization Mechanism. M+C is significantly faster than
F+H and Control, but not significantly different from M. (N=12)

A single-factor within-subject design was used, with the same
four customization mechanisms. Participants had to change
10 different settings with each mechanism, using all the 40
settings available in Wunderlist, for a total of 12 x 40 = 480
trials. The three Customization Layer variants were blocked
together, to limit the number of times participants had to
switch between the two mental models. Half of the partic-
ipants began with the Customization Layer block, the other
half with the Control condition. Within the Customization
Layer block, the presentation order of the three variants was
fully counterbalanced. The settings were randomly ordered
across all blocks.

The experiment procedure was similar to the MTurk study,
except for a few changes reflecting the within-subject design.
After each mechanism condition, participants were asked to
rate on a 7-point Likert scale the mechanism on three metrics:
ease of use, perceived speed, and satisfaction. At the end
of the experiment, participants were asked to rank the four
mechanisms on the same metrics. No recognition question-
naires were administered, since it would have been difficult
to tease apart the learning that happened in each condition.
The experiment was concluded by a brief semi-structured in-
terview. Participants were asked about their perception of the
four different customization mechanisms, and we gathered in-
sights on how they developed a mental model of Anchored
Customization.

Face-to-Face Lab Results
We present the quantitative and qualitative results.

Quantitative results
We ran a repeated measures ANOVA on the duration of tri-
als. As in Experiment 1, the data was log-transformed and
we used medians. As shown on Figure 6, there was a main
effect of customization mechanism (F3,33 = 5.61, p < .01, η2

G
= 0.16). M+C was faster than Control (p < .05, 36% faster)
and F+H (p = .06, 40% faster). No other pair was significantly
different. The order in which participants saw the conditions
(Control first, or Customization Layer first) had no significant
effect either.

The subjective ratings collected after each block were ana-
lyzed with a Friedman test. No differences were found for
satisfaction and ease of use. Perceived speed was border-
line significant (χ2

3 = 7.1, p = .07), with the majority of the
difference coming from M+C reported to be faster than F+H
(p = .1). In terms of the ranking data, participants were almost
evenly divided between Customization Layer (6 top ranks)
and Control (7) —one participant ranked two mechanisms as
best. There was also no clear consensus among which of the

7

three CL variants was best: with 1, 3, and 2 votes going to M,
M+C, and F+H respectively.

Qualitative results
The comments made by participants during the experiment
and their answers during the interview were recorded. We
report the findings of a thematic analysis [5].

Anchored Customization. Nine out of 12 participants ac-
quired the intended mental model of Anchored Customiza-
tion: 6 acquired it immediately with the first variant of Cus-
tomization Layer they encountered, the other 3 with the sec-
ond variant. Once participants understood the concept of An-
chored Customization, they were able to use it successfully:
“I’m used to all the settings hidden away in a menu, but
I think this (Minimal) makes a lot of sense” (P5), “I think
the point of this (F+H) is that I don’t need to think under
which category each setting is” (P3). In some cases, partic-
ipants even imagined appropriate anchors that were not ac-
tually present in Wunderlist, which shows a clear grasp of
the Anchor Customization Concept. For instance, P1 said:
“I was looking for a printing icon”, while searching for the
setting “don’t print completed todos when printing a list”.

Three out of 12 participants did not seem to have acquired
the intended mental model: in more than 50% of trials, they
clicked on any anchor, from which they immediately opened
the full panel and browsed the tabs to find the desired set-
ting. These 3 participants were among the 6 who started the
experiment in the Control condition, which could have nega-
tively affected their behavior in the subsequent Customization
Layer conditions. The only time these participants searched
for an appropriate anchor (rather than just any anchor) was
when the target setting was related to one of the Smart Lists,
in the left sidebar (see Figure 2). These 3 participants may
have reasoned by analogy with their one practice trial, which
instructed them to change a (different) Smart Lists setting.

Customization Layer variants. Interestingly, at least 3 par-
ticipants did not notice any difference between M and M+C
during the trials, and only realized that they were different at
the end when they were asked to rank the four customiza-
tion mechanisms. Some participants liked the extra struc-
ture provided by the tab names in M+C: “In Minimal I don’t
know where I am in the greater structure. [M+C] is more
organized” (P1); “The links in [M+C] are clearer, you know
where you’re going” (P8).

In F+H, at least 4 participants did not see the orange high-
lighting, although it was clearly visible (Figure 4). This could
be a case of inattentional blindness [31]: participants who
hadn’t yet acquired the intended mental model may have dis-
carded the highlighting because it had no meaning to them.
Other participants thought of the highlighting as a soft sug-
gestion from the system: “At one point I assumed the high-
lighting was like a hint”(P8), “[the system] is saying: I think
you are looking for this, but I’m not sure” (P12).

Wunderlist. Although it was not an explicit goal, this experi-
ment revealed some usability problems with Wunderlist’s set-
tings panel, which was used as the Control condition. The
most problematic aspect is that 10 settings are hidden under

Figure 7. Density plots of the distribution of the percentage of trials
in which participants selected a “correct” anchor—one associated with
the target setting. Participants in the right mode followed an “anchor
search” strategy, while participants in the left mode resorted to a “full
panel search”.

a “show more” button in the Shortcuts tab. This design deci-
sion was probably intended to avoid showing all 20 shortcuts
settings at once, by hiding the ones less likely to be changed.
However, this “show more” button was not salient enough,
and 10/12 participants missed it the first time they looked for
one of the settings it was hiding. Interestingly, this problem
was naturally alleviated in all Customization Layer variants:
in both M and M+C, only the relevant settings are shown
when clicking on an anchor, so there is no need for a hiding
mechanism. F+H automatically unhides all of the 10 more
advanced shortcuts if one of them is highlighted, and scrolls
down to the first highlighted setting.

Visual design. Our primary concern while designing the
Customization Layer was interaction design, not aesthetics.
However, as is often the case in HCI experiments, some par-
ticipants tended to focus on the visual appearance of the dif-
ferent interfaces more than their behavior: 4/12 participants
indicated that they liked the look of the Wunderlist settings
panel better. In particular, the presence of an icon on each tab
was appreciated (P9). This might explain why 7 participants
ranked Control as well or above Customization Layer: as P10
puts it, “for customers pretty is more important”.

Secondary Exploratory Analyses
The fact that we obtained different performance results for
M and M+C in our two experiments was surprising and
prompted us to probe the data further. M was found to be
faster than F+H and Control in the first study, whereas it
was M+C that was faster than F+H and Control in the sec-
ond study. Yet in both cases, the p-value and effect sizes are
similar. A closer look shows that these results are not con-
tradictory: M and M+C were never found to be significantly
different from each other, nor significantly slower than F+H
or Control.

In order to tease this apart, we looked at the logged data with
a focus to understand participants’ approach to finding the
target setting. Of particular interest is whether participants
found a correct anchor to click on to access the target set-
ting (what we call “anchor search”), or if they defaulted to
clicking on any anchor from which they then browsed the full
settings panel (“full panel search”). For each participant, we
computed the percentage of trials in which they found a cor-
rect anchor, out of the total number of trials in the experiment.
The distribution of this metric across all participants is clearly
bimodal, both on MTurk and in the lab (Figure 7). The posi-

8

Figure 8. Density plots of the percentage of trials in which participants
selected a “correct” anchor, for each Customization Layer variant, on
MTurk (top) and in the lab (bottom). The minimal variants all have a
higher right mode (“anchor search”), while F+H has higher left mode
(“full panel search”).

tion of the “valley” (local minimum) of the two distributions
is also similar: 61% on MTurk, 63% in the lab.

This analysis points to a likely hidden variable in our data:
the search strategy used by participants. Indeed the three Cus-
tomization Layer conditions vary along this extra dimension,
as shown in Figure 8. While these variations might explain
the difference between the two minimal variants and F+H,
the distributions for M and M+C are too similar to explain the
difference in results observed between the two experiments.

For the next step in our exploratory analysis, we looked only
at the data from participants who adopted an “anchor search”
strategy to see if we could see any differences between M
and M+C. More specifically, we re-ran the ANOVA on trial
duration only on the data that fell above the middle point. For
the MTurk experiment, M and M+C were both faster than
Control (p < .001 each), and not significantly different from
each other. For the lab experiment, M and M+C were also
both faster than both F+H and Control (all p < .05). This
secondary analysis suggests that the results of MTurk and the
face-to-face experiments may be consistent, as long as you
take search strategy into account: M and M+C are both faster
than Control, and not significantly different from each other.
As with any non-planned analysis, these results need to be
interpreted with caution.

DISCUSSION
The results of our experiments are promising: whether on
MTurk or in the lab, one of the minimal variants was signifi-
cantly faster than Control, with a medium effect size, and no
variant was slower. These performance improvements were
obtained even though participants were exposed to Anchored
Customization for the first time, and received little informa-
tion to help them build an appropriate mental model. We
now discuss the insights gathered on the three Customization
Layer variants, and reflect on the possibilities offered by this
new customization mechanism.

Reconciling the performance results. M and M+C performed
differently in the two experiments. Our secondary analyses
revealed a likely hidden variable, namely search strategy. For
participants using the anchor search strategy, the results of the

two experiments are consistent: M and M+C are both faster
than Control, and not significantly different from each other.
Hence there must be a significant difference in how the “full
panel search” participants performed in the two experiments
which translated into different relative performances for M
and M+C on MTurk and in the lab. It might just be a statistical
fluke. For instance, looking at the data shows that on MTurk
all 5 of of the M+C participants that did a “full panel search”
were disproportionately slower than the “full panel search”
participants in all other conditions. This inconsistency sug-
gests that the randomization of participant assignment to con-
ditions may not have equalized individual differences. More
research will be needed to further assess this issue.

Few participants in the F+H condition used the “anchor
search” strategy: 2/12 on MTurk, 5/12 in the lab. It could
be that highlighting settings in a panel is not a strong enough
cue to help users acquire the Anchored Customization mental
model. Since the structure of the settings panels is retained
in F+H, there may be a strong transfer effect that encourages
users to default to the “full panel search”, instead of explor-
ing anchors. Since few participants used F+H the way it was
intended, we cannot conclude with certainty on its potential
performance: is F+H necessarily slower than M and M+C, or
can it be as fast when properly used? In any case, F+H is not
slower than Control, so it would not be detrimental. Since
some participants perceived the highlighting as a hint, F+H
could be used as a “softer” version of Customization Layer
for users who might not be comfortable with the degree of
minimalism of the two minimal variants.

Performance/Awareness tradeoff. On MTurk, M was signif-
icantly faster than F+H and Control, but it also scored sig-
nificantly lower on recognition of tab names. This could
be interpreted as a performance/awareness tradeoff found in
other multi-layered interfaces [13]. Yet, users in M did just
as well as others in terms of recognizing the settings them-
selves. Thus, the awareness tradeoff here seems to affect only
awareness of the structure of the upper layer (the full settings
panel), not its content, as there were no differences in recog-
nition scores for the settings themselves. This is not entirely
surprising: in Customization Layer, all the settings are ac-
cessible via the minimal panel, albeit from different anchors.
By contrast, the personalized interfaces studied by Findlater
et al. [13] only display a static subset of features in the first
layer, while the others were only visible in a different layer.

Applicability to other software. We focused our work on task
management applications, and the question remains whether
Anchored Customization could provide similar benefits for
other types of software. At one extreme is text editors, which
are often highly customizable. These editors typically have
very few always-visible UI elements, and rely mostly on
menus and keyboard shortcuts. Thus, they are not well-suited
for Anchored Customization. Furthermore, text editor users
are generally comfortable customizing their software by edit-
ing the config files directly. The opposite extreme is complex
software applications designed for non-technical users, such
as Adobe Creative Suite. These applications have many wid-
gets that provide access to lots of features. Anchoring settings

9

to these various UI elements is possible, but the resulting Cus-
tomization Layer may be overwhelming. The main interface
of these applications can itself be overwhelming, however, es-
pecially for new users. Anchored Customization would sim-
ply reflect the complexity of the underlying software.

Applicability to handheld devices. Our systematic review
showed that mobile apps organize their settings in very simi-
lar ways to desktop applications. Mobile apps generally rely
on icons and buttons for user input, since keyboard shortcuts
and extensive menus are not available. As such, they are well
suited for Anchored Customization. The limited screen real
estate would warrant using a minimal variant. The anchored
customization mechanism could be activated via a standard
application menu, but touchscreens offer other possibilities:
for instance, users could long-press or multi-tap an anchor to
see its associated settings, or use a special standardized ges-
ture to activate the Customization Layer. We observed that
mobile applications generally offer fewer settings than desk-
top apps. The introduction of a well-designed customization
mechanism could lead to more customizable mobile apps.

The developers’ point of view. Beyond its benefits to users,
our Anchored Customization approach may also change the
way designers and developers think about customization. Al-
though they are not required to change any setting to adopt
Anchored Customization, the process of mapping settings to
UI elements could have a positive effect on the settings of-
fered. For instance, designers might realize that some parts of
the interface have no setting anchored to them, which would
highlight a potential opportunity for providing settings that
cater to this area. Creating and labeling settings may also be-
come faster, since the problem of finding appropriate words
to refer to interface elements is mitigated by the context pro-
vided by the anchors. Finding categories to organize settings
into tabs might also become superfluous.

Limitations
While our results are promising, our experiments had limita-
tions, which come mostly from the challenges of evaluating
customization in an artificial setting. We point out three. (1)
To maximize ecological validity, we used Wunderlist’s actual
settings panel as a baseline for the Control condition. But
some participants focused their feedback on its high quality
visual design relative to our prototyped Customization Layer
variants. In retrospect, we should have recreated this panel
in the same visual style as our prototypes which might have
increased the internal validity of our experiments. (2) The
practice trial could have been more effective at conveying the
intended model. Participants performed only one trial, thus
only had to click on one anchor to complete it. However,
to really understand the concept of Anchored Customization,
one must click on at least two anchors to see that the set-
tings offered are different. Some participants took time dur-
ing the practice trial to explore the Customization Layer on
their own, clicking on multiple anchors to see the outcome.
This free exploration seemed more effective than our prac-
tice trial, and would also be more similar to real-world condi-
tions. (3) Our experiments only included one application with
a medium number of settings. It is possible that the number

of settings offered by an app affects the relative performance
of Customization Layer and settings panels.

We compared customization mechanisms mainly on how
quickly participants could find a designated setting. However,
in a real world situation, the awareness (or lack thereof) of
which settings are available likely plays an important role. In
traditional settings panels, awareness is gained by serendipi-
tous discovery (also referred to as “incidental learning” [13])
: users happen to notice a setting of interest while search-
ing the panel for another one. Serendipity can also happen in
Anchored Customization, but the notion of proximity is rel-
ative to the anchors, instead of the settings panel’s structure.
Because our experiment task was time-constrained, these dif-
ferent forms of serendipity were not well captured.

CONCLUSIONS AND FUTURE WORK
Anchored Customization is an approach that places settings
in context within the application interface, so that users are
not required to learn the abstract structure of a settings panel.
A systematic review of a set of Personal Task Management
apps found that approximately 84% of the settings could be
anchored in the UI. Our Customization Layer prototype re-
veals all the anchors as affordances for customization. We de-
signed three variants of Customization Layer based on multi-
layered interfaces, and implemented these variants on top of
a popular web application for task management, Wunderlist.
Two experiments (Mechanical Turk and face-to-face) showed
that the two minimalist variants were 35-36% faster than
Wunderlist’s settings panel.

Evaluating the long term impact of this customization ap-
proach remains future work. A longitudinal field study would
determine if a more usable customization mechanism does
actually increases users’ likelihood to customize. It would
also help to verify our assumption that Anchored Customiza-
tion requires one-time learning: once this approach is under-
stood in the context of one particular app, the mental model
should be transferable to other apps. Our prototype could be
distributed to real users of Wunderlist as a browser extension,
or adapted to other applications to compare the effect of dif-
ferent types of settings and different application domains.

Currently, app designers need to provide the mapping be-
tween settings and UI elements. With the growing popularity
of advanced front-end frameworks in web development, code
analysis techniques could possibly generate part of the map-
ping automatically, by determining which UI elements and
listener functions are affected by a setting. Another possibil-
ity would be to involve users in the mapping process. Con-
trary to crowdsourced contextual help [7], users cannot be
expected to generate the entire mapping themselves, but they
could tweak a designer’s mapping to better match their expec-
tations. The idea of refining the mapping by aggregating data
from individual users could be expanded to other customiza-
tion opportunities as well. For instance, the most popular ex-
tensions and plugins could be anchored to the UI.

ACKNOWLEDGEMENT
This work was was funded by the Graphics Animation and
New Media (GRAND) NCE and an NSERC Discovery grant.

10

REFERENCES
1. Roger Bakeman. 2005. Recommended effect size

statistics for repeated measures designs. Behavior
Research Methods 37, 3 (2005), 379–384. DOI:
http://dx.doi.org/10.3758/BF03192707

2. Patrick Baudisch, Desney Tan, Maxime Collomb, Dan
Robbins, Ken Hinckley, Maneesh Agrawala, Shengdong
Zhao, and Gonzalo Ramos. 2006. Phosphor: Explaining
Transitions in the User Interface Using Afterglow
Effects. In Proceedings of the 19th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’06). ACM, New York, NY, USA, 169–178.
DOI:http://dx.doi.org/10.1145/1166253.1166280

3. Ofer Bergman, Ruth Beyth-Marom, Rafi Nachmias, Noa
Gradovitch, and Steve Whittaker. 2008. Improved
Search Engines and Navigation Preference in Personal
Information Management. ACM Transactions on
Information Systems 26, 4, Article 20 (Oct. 2008), 24
pages. DOI:
http://dx.doi.org/10.1145/1402256.1402259

4. Anastasia Bezerianos, Pierre Dragicevic, and Ravin
Balakrishnan. 2006. Mnemonic Rendering: An
Image-based Approach for Exposing Hidden Changes in
Dynamic Displays. In Proceedings of the 19th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’06). ACM, New York, NY, USA,
159–168. DOI:
http://dx.doi.org/10.1145/1166253.1166279

5. Virginia Braun and Victoria Clarke. 2006. Using
thematic analysis in psychology. Qualitative Research in
Psychology 3, 2 (2006), 77–101. DOI:
http://dx.doi.org/10.1191/1478088706qp063oa

6. Andrea Bunt, Cristina Conati, and Joanna McGrenere.
2007. Supporting Interface Customization Using a
Mixed-initiative Approach. In Proceedings of the 12th
International Conference on Intelligent User Interfaces
(IUI ’07). ACM, New York, NY, USA, 92–101. DOI:
http://dx.doi.org/10.1145/1216295.1216317

7. Parmit K. Chilana, Andrew J. Ko, and Jacob O.
Wobbrock. 2012. LemonAid: Selection-based
Crowdsourced Contextual Help for Web Applications.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12). ACM, New
York, NY, USA, 1549–1558. DOI:
http://dx.doi.org/10.1145/2207676.2208620

8. Matjaz Debevc, Beth Meyer, Dali Donlagic, and Rajko
Svecko. 1996. Design and evaluation of an adaptive icon
toolbar. User Modeling and User-Adapted Interaction 6,
1 (1996), 1–21. DOI:
http://dx.doi.org/10.1007/BF00126652

9. Morgan Dixon and James Fogarty. 2010. Prefab:
Implementing Advanced Behaviors Using Pixel-based
Reverse Engineering of Interface Structure. In
Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI ’10). ACM, New
York, NY, USA, 1525–1534. DOI:
http://dx.doi.org/10.1145/1753326.1753554

10. James R. Eagan, Michel Beaudouin-Lafon, and
Wendy E. Mackay. 2011. Cracking the Cocoa Nut: User
Interface Programming at Runtime. In Proceedings of
the 24th Annual ACM Symposium on User Interface
Software and Technology (UIST ’11). ACM, New York,
NY, USA, 225–234. DOI:
http://dx.doi.org/10.1145/2047196.2047226

11. W. Keith Edwards, Scott E. Hudson, Joshua Marinacci,
Roy Rodenstein, Thomas Rodriguez, and Ian Smith.
1997. Systematic Output Modification in a 2D User
Interface Toolkit. In Proceedings of the 10th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’97). ACM, New York, NY, USA,
151–158. DOI:
http://dx.doi.org/10.1145/263407.263537

12. Leah Findlater and Joanna McGrenere. 2008. Impact of
Screen Size on Performance, Awareness, and User
Satisfaction with Adaptive Graphical User Interfaces. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’08). ACM, New
York, NY, USA, 1247–1256. DOI:
http://dx.doi.org/10.1145/1357054.1357249

13. Leah Findlater and Joanna McGrenere. 2010. Beyond
performance: Feature awareness in personalized
interfaces. International Journal of Human-Computer
Studies 68, 3 (2010), 121 – 137. DOI:
http://dx.doi.org/10.1016/j.ijhcs.2009.10.002

14. Gerhard Fischer. 1993. Adaptive User Interfaces.
Elsevier Science Publishers B.V., Chapter Shared
Knowledge in Cooperative Problem-Solving Systems –
Integrating Adaptive and Adaptable Components,
49–68. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.310.8392

15. Gerhard Fischer and Elisa Giaccardi. 2006.
Meta-design: A Framework for the Future of End-User
Development. In End User Development, Henry
Lieberman, Fabio Paternò, and Volker Wulf (Eds.).
Human-Computer Interaction Series, Vol. 9. Springer
Netherlands, 427–457. DOI:
http://dx.doi.org/10.1007/1-4020-5386-X_19

16. Stephen Fitchett, Andy Cockburn, and Carl Gutwin.
2013. Improving Navigation-based File Retrieval. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 2329–2338. DOI:
http://dx.doi.org/10.1145/2470654.2481323

17. G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T.
Dumais. 1987. The Vocabulary Problem in
Human-system Communication. Commun. ACM 30, 11
(Nov. 1987), 964–971. DOI:
http://dx.doi.org/10.1145/32206.32212

11

http://dx.doi.org/10.3758/BF03192707
http://dx.doi.org/10.1145/1166253.1166280
http://dx.doi.org/10.1145/1402256.1402259
http://dx.doi.org/10.1145/1166253.1166279
http://dx.doi.org/10.1191/1478088706qp063oa
http://dx.doi.org/10.1145/1216295.1216317
http://dx.doi.org/10.1145/2207676.2208620
http://dx.doi.org/10.1007/BF00126652
http://dx.doi.org/10.1145/1753326.1753554
http://dx.doi.org/10.1145/2047196.2047226
http://dx.doi.org/10.1145/263407.263537
http://dx.doi.org/10.1145/1357054.1357249
http://dx.doi.org/10.1016/j.ijhcs.2009.10.002
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.310.8392
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.310.8392
http://dx.doi.org/10.1007/1-4020-5386-X_19
http://dx.doi.org/10.1145/2470654.2481323
http://dx.doi.org/10.1145/32206.32212

18. Alfonso García Frey, Gaëlle Calvary, and Sophie
Dupuy-Chessa. 2010. Xplain: An Editor for Building
Self-explanatory User Interfaces by Model-driven
Engineering. In Proceedings of the 2nd ACM SIGCHI
Symposium on Engineering Interactive Computing
Systems (EICS ’10). ACM, New York, NY, USA, 41–46.
DOI:http://dx.doi.org/10.1145/1822018.1822026

19. 6 Wunderkinder GmbH. 2015. Wunderlist. Version
3.12.3. (2015). http://www.wunderlist.com (Retrieved
on 2015-07-01).

20. Mona Haraty, Diane Tam, Shathel Haddad, Joanna
McGrenere, and Charlotte Tang. 2012. Individual
Differences in Personal Task Management: A Field
Study in an Academic Setting. In Proceedings of
Graphics Interface 2012 (GI ’12). Canadian Information
Processing Society, Toronto, Ont., Canada, Canada,
35–44. http:
//dl.acm.org/citation.cfm?id=2305276.2305284

21. Eric Horvitz, Jack Breese, David Heckerman, David
Hovel, and Koos Rommelse. 1998. The LumièRe
Project: Bayesian User Modeling for Inferring the Goals
and Needs of Software Users. In Proceedings of the
Fourteenth Conference on Uncertainty in Artificial
Intelligence (UAI’98). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 256–265. http:
//dl.acm.org/citation.cfm?id=2074094.2074124

22. J. Johnson, T.L. Roberts, W. Verplank, D.C. Smith, C.H.
Irby, M. Beard, and K. Mackey. 1989. The Xerox Star: a
retrospective. Computer 22, 9 (Sept 1989), 11–26. DOI:
http://dx.doi.org/10.1109/2.35211

23. Helge Kahler, Anders Mørch, Oliver Stiemerling, and
Volker Wulf. 2000. Tailorable systems and cooperative
work. Computer Supported Cooperative Work (CSCW)
9, 1 (2000), 1–4. DOI:
http://dx.doi.org/10.1023/A:1017243824820

24. Henry Lieberman, Fabio Paternò, Markus Klann, and
Volker Wulf. 2006. End-User Development: An
Emerging Paradigm. In End User Development, Henry
Lieberman, Fabio Paternò, and Volker Wulf (Eds.).
Human-Computer Interaction Series, Vol. 9. Springer
Netherlands, 1–8. DOI:
http://dx.doi.org/10.1007/1-4020-5386-X_1

25. Wendy E. Mackay. 1991. Triggers and Barriers to
Customizing Software. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’91). ACM, New York, NY, USA, 153–160. DOI:
http://dx.doi.org/10.1145/108844.108867

26. Thomas W. Malone, Kum-Yew Lai, and Christopher
Fry. 1995. Experiments with Oval: A Radically
Tailorable Tool for Cooperative Work. ACM
Transactions on Information Systems 13, 2 (April 1995),
177–205. DOI:
http://dx.doi.org/10.1145/201040.201047

27. Justin Matejka, Tovi Grossman, and George
Fitzmaurice. 2013. Patina: Dynamic Heatmaps for

Visualizing Application Usage. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, New York, NY, USA,
3227–3236. DOI:
http://dx.doi.org/10.1145/2470654.2466442

28. Joanna McGrenere, Ronald M. Baecker, and Kellogg S.
Booth. 2002. An Evaluation of a Multiple Interface
Design Solution for Bloated Software. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’02). ACM, New York, NY,
USA, 164–170. DOI:
http://dx.doi.org/10.1145/503376.503406

29. Xiaojun Meng, Shengdong Zhao, Yongfeng Huang,
Zhongyuan Zhang, James Eagan, and Ramanathan
Subramanian. 2014. WADE: Simplified GUI Add-on
Development for Third-party Software. In Proceedings
of the 32nd Annual ACM Conference on Human Factors
in Computing Systems (CHI ’14). ACM, New York, NY,
USA, 2221–2230. DOI:
http://dx.doi.org/10.1145/2556288.2557349

30. Ben Shneiderman. 2003. Promoting Universal Usability
with Multi-layer Interface Design. In Proceedings of the
2003 Conference on Universal Usability (CUU ’03).
ACM, New York, NY, USA, 1–8. DOI:
http://dx.doi.org/10.1145/957205.957206

31. Daniel J Simons and Christopher F Chabris. 1999.
Gorillas in our midst: Sustained inattentional blindness
for dynamic events. Perception-London 28, 9 (1999),
1059–1074.

32. Gunnar Stevens and Torben Wiedenhöfer. 2006. CHIC -
a Pluggable Solution for Community Help in Context. In
Proceedings of the 4th Nordic Conference on
Human-computer Interaction: Changing Roles
(NordiCHI ’06). ACM, New York, NY, USA, 212–221.
DOI:http://dx.doi.org/10.1145/1182475.1182498

33. Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Phillips,
and Nicolas Roussel. 2006. User Interface Façades:
Towards Fully Adaptable User Interfaces. In
Proceedings of the 19th Annual ACM Symposium on
User Interface Software and Technology (UIST ’06).
ACM, New York, NY, USA, 309–318. DOI:
http://dx.doi.org/10.1145/1166253.1166301

34. Gaurav Paruthi Tao Dong, Mark S. Ackerman, Mark W.
Newman. 2013. Social Overlays: Collectively Making
Websites More Usable. Lecture Notes in Computer
Science, Vol. 8120. Springer Berlin Heidelberg, Berlin,
Heidelberg. DOI:
http://dx.doi.org/10.1007/978-3-642-40498-6

35. Volker Wulf and Björn Golombek. 2001. Direct
activation: A concept to encourage tailoring activities.
Behaviour & Information Technology 20, 4 (2001),
249–263. DOI:
http://dx.doi.org/10.1080/01449290110048016

12

http://dx.doi.org/10.1145/1822018.1822026
http://www.wunderlist.com
http://dl.acm.org/citation.cfm?id=2305276.2305284
http://dl.acm.org/citation.cfm?id=2305276.2305284
http://dl.acm.org/citation.cfm?id=2074094.2074124
http://dl.acm.org/citation.cfm?id=2074094.2074124
http://dx.doi.org/10.1109/2.35211
http://dx.doi.org/10.1023/A:1017243824820
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.1145/108844.108867
http://dx.doi.org/10.1145/201040.201047
http://dx.doi.org/10.1145/2470654.2466442
http://dx.doi.org/10.1145/503376.503406
http://dx.doi.org/10.1145/2556288.2557349
http://dx.doi.org/10.1145/957205.957206
http://dx.doi.org/10.1145/1182475.1182498
http://dx.doi.org/10.1145/1166253.1166301
http://dx.doi.org/10.1007/978-3-642-40498-6
http://dx.doi.org/10.1080/01449290110048016

	Introduction
	Related Work
	Systematic Assessment of Feasibility
	Existing customization mechanisms
	Feasibility of Anchored Customization

	Design
	Anchored Customization
	Display of settings
	Display of anchors

	Customization Layer
	Anchors visible in a layer
	Three variants for displaying settings
	Search
	Software architecture
	Implementation

	Evaluation
	Experiment 1: Remote Mechanical Turk
	Participants
	Task
	Measures
	Conditions
	Design
	Procedure

	MTurk Results
	Experiment 2: Face-to-Face in the Lab
	Method differences from Study 1

	Face-to-Face Lab Results
	Quantitative results
	Qualitative results
	Anchored Customization
	Customization Layer variants
	Wunderlist
	Visual design

	Secondary Exploratory Analyses

	Discussion
	Reconciling the performance results
	Performance/Awareness tradeoff
	Applicability to other software
	Applicability to handheld devices
	The developers' point of view

	Limitations

	Conclusions and Future Work
	Acknowledgement
	REFERENCES

